Sunday, January 24, 2016

FizzBuzz and the Roman Numeral Kata are the Same Thing!

"The same, sir."
-- Shakespeare, Coriolanus
Act IV, Scene III, Line 7

As Homer Simpson pointed out, "Coke and Pepsi are the same thing!"


Similarly I plan to show that the FizzBuzz and Roman Numeral katas are the same thing! 

First let's look at the rules of FizzBuzz.

f(x : int) : string
  if 3 | x and 5 | x then "FizzBuzz"
  if 3 | x then "Fizz"
  if 5 | x then "Buzz"
  default string x


*note, 3 | x reads 3 divides x, in other words x / 3 does not have a remainder

 In general we see that we have two (or three) rules and a default value, we are translating from the domain into the codomain following a set of rules, in other words we have a function.

namespace FizzBuzz
module FizzBuzz =
let fizzbuzzer (n : int) =
[(3, "Fizz");
(5, "Buzz")]
|> List.fold (fun m (x, s) -> m + if n % x = 0 then s else "") ""
|> (fun s -> if s = "" then string n else s)
view raw FizzBuzz.fs hosted with ❤ by GitHub
namespace FizzBuzz.Tests
module FizzBuzzTests =
open FizzBuzz.FizzBuzz
open Xunit
open FsUnit.Xunit
[<Theory>]
[<InlineData(3, "Fizz")>]
[<InlineData(5, "Buzz")>]
[<InlineData(15, "FizzBuzz")>]
[<InlineData(2, "2")>]
let ``Multiples of given value should contain expected`` (given : int) (expected : string) =
fizzbuzzer given |> should haveSubstring expected

How about the Roman Numeral kata?

f(x : int) : string
  fold
    roman-numerals : (int, string)
    lambda((x : int, m : string),
           (k : int, v : string)) : (int, string)
      while k | x then (x / k, concat m v)
    (x, default string) : (int, string)

Again we see a list of rules for translation.

namespace RomanNumerals
module RomanNumerals =
let translate n =
[(40, "XL");
(10, "X"); (9, "IX");
(5, "V"); (4, "IV");
(1, "I")]
|> List.fold
(fun (x, m) (k, v) ->
if x >= k then (x - (k * (x / k)), m + String.replicate (x / k) v)
else (x, m))
(n, "")
|> snd
module RomanNumerals.Tests.Translate
open RomanNumerals.RomanNumerals
open Xunit
open FsUnit.Xunit
[<Theory>]
[<InlineData(1, "I")>]
[<InlineData(2, "II")>]
[<InlineData(3, "III")>]
[<InlineData(4, "IV")>]
[<InlineData(5, "V")>]
[<InlineData(6, "VI")>]
[<InlineData(7, "VII")>]
[<InlineData(8, "VIII")>]
[<InlineData(9, "IX")>]
[<InlineData(10, "X")>]
[<InlineData(11, "XI")>]
[<InlineData(29, "XXIX")>]
[<InlineData(40, "XL")>]
[<InlineData(49, "XLIX")>]
let ``given 1 it must return I``
(value : int, expected : string) =
translate value |> should equal expected

The only real difference to FizzBuzz is the fold across the rules, but we've hinted at this in the FizzBuzz description above.  We stated that FizzBuzz has two (or three) rules, we can rewrite it using a fold with just the two rules using the fold to cover the "and" case.

namespace Translate
module Translate =
let translate folding defaulting translations seed n =
translations
|> List.fold folding (n, seed)
|> snd
|> defaulting
let fizzbuzzer (n : int) =
[(3, "Fizz");
(5, "Buzz")]
|> List.fold
(fun (n, r) (x, s) -> (n, r + if n % x = 0 then s else ""))
(n, "")
|> snd
|> (fun s -> if s = "" then string n else s)
let fizzbuzzer2 (n : int) =
translate
(fun (n, r) (x, s) -> (n, r + if n % x = 0 then s else ""))
(fun s -> if s = "" then string n else s)
[(3, "Fizz");
(5, "Buzz")]
""
n
let romanize (n : int) =
[(5, "V");
(4, "IV");
(1, "I")]
|> List.fold
(fun (n, r) (x, s) ->
(n % x, r + if n >= x then String.replicate (n / x) s else ""))
(n, "")
|> snd
|> (fun s -> s)
let romanize2 (n : int) =
translate
(fun (n, r) (x, s) ->
(n % x, r + if n >= x then String.replicate (n / x) s else ""))
(fun d -> d)
[(5, "V");
(4, "IV");
(1, "I")]
""
n
view raw Translate.fs hosted with ❤ by GitHub
namespace Translate.Tests
module TranslateTests =
open Translate.Translate
open Xunit
open FsUnit.Xunit
[<Theory>]
[<InlineData(3, "Fizz")>]
[<InlineData(5, "Buzz")>]
[<InlineData(15, "FizzBuzz")>]
[<InlineData(2, "2")>]
let ``Given value fizzbuzzer should contain expected`` (given : int) (expected : string) =
fizzbuzzer given |> should haveSubstring expected
[<Theory>]
[<InlineData(3, "Fizz")>]
[<InlineData(5, "Buzz")>]
[<InlineData(15, "FizzBuzz")>]
[<InlineData(2, "2")>]
let ``Given value fizzbuzzer2 should contain expected`` (given : int) (expected : string) =
fizzbuzzer2 given |> should haveSubstring expected
[<Theory>]
[<InlineData(1, "I")>]
[<InlineData(2, "II")>]
[<InlineData(4, "IV")>]
[<InlineData(5, "V")>]
let ``Given value should romanize to expected`` (given : int) (expected : string) =
romanize given |> should equal expected
[<Theory>]
[<InlineData(1, "I")>]
[<InlineData(2, "II")>]
[<InlineData(4, "IV")>]
[<InlineData(5, "V")>]
let ``Given value should romanize2 to expected`` (given : int) (expected : string) =
romanize2 given |> should equal expected

We see the FizzBuzz and Roman Numeral as having the same shape which we use in the generalization in the "2 version".  Thus using the same function with a set of rules, a defaulting function, and a seed we create both the FizzBuzz and Roman Numeral kata from the same general function!